Concerted action of two dlx paralogs in sensory placode formation.

نویسندگان

  • Keely S Solomon
  • Andreas Fritz
چکیده

Sensory placodes are ectodermal thickenings that give rise to elements of the vertebrate cranial sensory nervous system, including the inner ear and nose. Although mutations have been described in humans, mice and zebrafish that perturb ear and nose development, no mutation is known to prevent sensory placode formation. Thus, it has been postulated that a functional redundancy exists in the genetic mechanisms that govern sensory placode development. We describe a zebrafish deletion mutation, b380, which results in a lack of both otic and olfactory placodes. The b380 deletion removes several known genes and expressed sequence tags, including dlx3 and dlx7, two transcription factors that share a homoeobox domain similar in sequence to the Drosophila Distal-less gene. dlx3 and dlx7 are expressed in an overlapping pattern in the regions that produce the otic and olfactory placodes in zebrafish. We present evidence suggesting that it is specifically the removal of these two genes that leads to the otic and olfactory phenotype of b380 mutants. Using morpholinos, antisense oligonucleotides that effectively block translation of target genes, we find that functional reduction of both dlx genes contributes to placode loss. Expression patterns of the otic marker pax2.1, olfactory marker anxV and eya1, a marker of both placodes, in morpholino-injected embryos recapitulate the reduced expression of these genes seen in b380 mutants. We also examine expression of dlx3 and dlx7 in the morpholino-injected embryos and present evidence for existence of auto- and cross-regulatory control of expression among these genes. We demonstrate that dlx3 is necessary and sufficient for proper otic and olfactory placode development. However, our results indicate that dlx3 and dlx7 act in concert and their importance in placode formation is only revealed by inactivating both paralogs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Amphioxus SoxB Family: Implications for the Evolution of Vertebrate Placodes

Cranial placodes are regions of thickened ectoderm that give rise to sense organs and ganglia in the vertebrate head. Homologous structures are proposed to exist in urochordates, but have not been found in cephalochordates, suggesting the first chordates lacked placodes. SoxB genes are expressed in discrete subsets of vertebrate placodes. To investigate how placodes arose and diversified in the...

متن کامل

dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula.

Rohon-Beard sensory neurons, neural crest cells, and sensory placodes can be distinguished at the boundary of the embryonic epidermis (skin) and the neural plate. The inductive signals at the neural plate border region are likely to involve a gradient of bone morphogenic protein (BMP) in conjunction with FGF and Wnts and other signals. However, how these signals are transduced to produce the fi...

متن کامل

Ectopic Sox3 activity elicits sensory placode formation

The induction of sensory organ placodes, in particular the lens placode, represents the paradigm for induction. We show that medaka Sox3 is expressed in the neuroectoderm and in the placodes of all sensory organs prior to placode formation and subsequently in placode-derived tissues. Ectopic Sox3 expression leads to ectopic expression of Pax6 and Eya1 in embryonic ectoderm and causes ectopic le...

متن کامل

Mutations affecting development of the zebrafish ear.

In a large scale screen for genetic defects in zebrafish embryogenesis we identified mutations affecting several aspects of ear development, including: specification of the otic placode, growth of the otic vesicle (otocyst), otolith formation, morphogenesis of the semicircular canals and differentiation of the otic capsule. Here we report initial phenotypic and genetic characterization of 20 of...

متن کامل

Fgf3 and Fgf10a Work in Concert to Promote Maturation of the Epibranchial Placodes in Zebrafish

Essential cellular components of the paired sensory organs of the vertebrate head are derived from transient thickenings of embryonic ectoderm known as cranial placodes. The epibranchial (EB) placodes give rise to sensory neurons of the EB ganglia that are responsible for relaying visceral sensations form the periphery to the central nervous system. Development of EB placodes and subsequent for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 129 13  شماره 

صفحات  -

تاریخ انتشار 2002